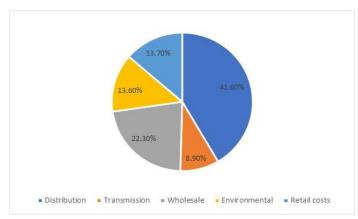
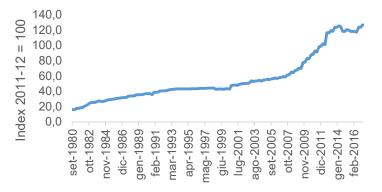
# VALUING THE IMPACT ON NETWORK RELIABILITY OF RESIDENTIAL BATTERY STORAGE

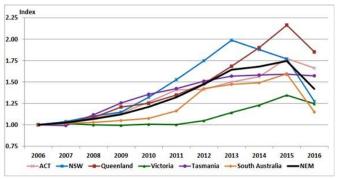
**Damian Shaw-Williams** 


Milan, 10-12 December, 2018 – Bocconi University

### Contents


- Background
- Methodology
- Results and discussion
- Conclusion

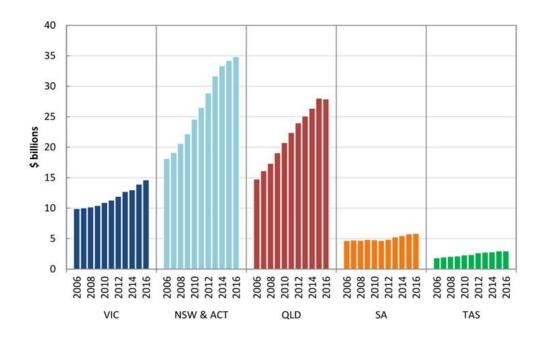



### Background – NEM a cautionary tale



Queensland Competition Authority Electricity Pricing Inquiry - Final Report, 2016

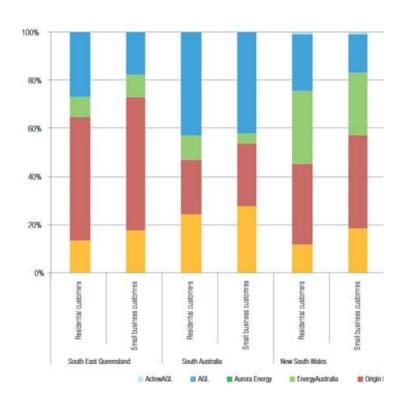



Electricity prices Australia 1980-2015 source: Australian Bureau of Statistics 6401.5 2017



Index of revenue changes from 2006 to 2016 by state in real terms (index 2016) Source: AER, 2017




### Asset bases



Regulatory Asset Base from 2006 to 2016 by NEM region, real values in 2015-16. Source: ACCC, 2017

- At a time of flat or declining demand
- Guaranteed rate of return on assets

#### Market concentration



"In retrospect, the creation of three very large retailers was not the best starting point for a competitive market" ACCC, 2017

...let alone generation

Source: Annual Report on Compliance & Performance of the Retail Energy Market 2016-17 p14

#### Rise of Distributed Generation

- Australia has one of highest rates of PV adoption 1.8m households
- Some urban areas over 40% penetration
- Network Operator response has been to limit further uptake
- Based on a narrow view of costs v benefits



### Network responses

- Barriers to further distributed gen
  - Network operator culture
  - Political landscapes influence network operators
  - Network revenue implications
  - Technical challenges

Simpson, G. Network operators and the transition to decentralised electricity: A Australian socio-technical case study, Energy Policy 2017.

 Qld example: Ergon tariff 46 July 2014 daily supply charge from 1162% (\$42/day to \$488/day) for commercial customers



### Reliability

- Commonly used as a planning metric
- Basis of incentive schemes for DNSPs
- Applied at network type level
- Lack of granularity in LV network



### Aim

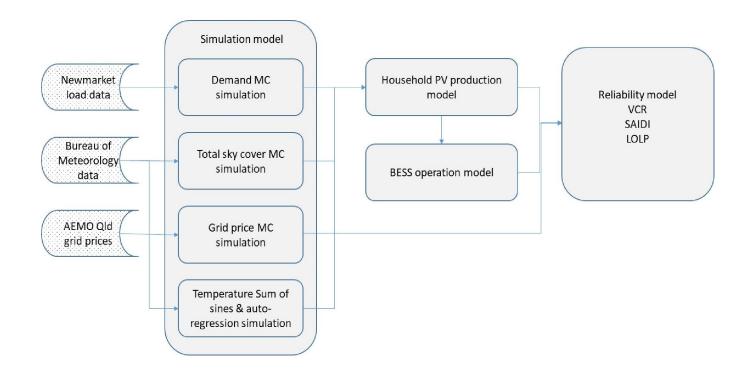
- To develop a model to determine local reliability impacts of PV + Batteries
- Through changes in area load profiles and economic outcomes

# Significance

- Reliability and affordability primary drivers of network spending
- Household investment decisions can result in positive outcomes for network operators
- Economic efficiency in alignment of rewards for actions that benefit and costs for that do not

### Methodology

- Techno-economic simulation model of households
- Monte Carlo modelling of weather, demand and pricing
- Economic analysis across a range of penetration scenarios measured against baseline of retail tariffs


#### Value measures

SAIDI - System Average Interruption Duration Index

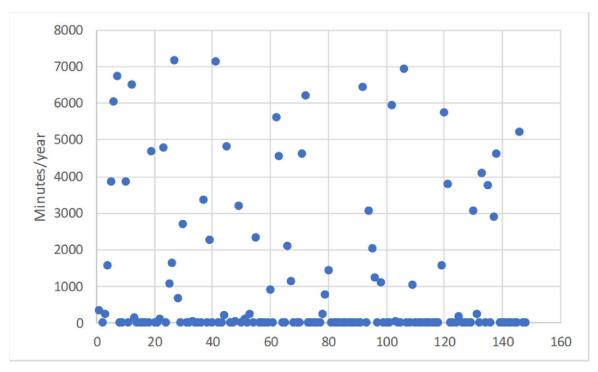
$$SAIDI = \frac{Total\ of\ unplanned\ outage\ minutes}{Number\ of\ distribution\ customers}$$

- VCR Value of Customer Reliability extensive survey based valuation of customer classes willingness to pay for reliable supply of electricity
- LOLP Loss of Load Probability probability that demand will exceed supply in any given period  $LOLP = \sum_{i} P(SOCend_{i} < 0)$

## Model components






# Energy profile changes

| Annual Aggregates         | Baseline | 10%   | 25%   | 50%     |
|---------------------------|----------|-------|-------|---------|
| PV installed kW           | -        | 70.0  | 185.0 | 375.0   |
| BESS installed kWh        | -        | 189.0 | 499.5 | 1,012.5 |
| Max Demand kW             | 387.9    | 355.9 | 304.9 | 229.4   |
| PV generation MWh         | -        | 109.9 | 290.5 | 588.9   |
| Peak period energy MWh    | 613.4    | 518.6 | 364.6 | 110.5   |
| OffPeak period energy MWh | 210.7    | 195.4 | 168.7 | 124.1   |
| Peak Energy %             | 74%      | 73%   | 68%   | 47%     |
| Total Energy Served MWh   | 824.1    | 714.1 | 533.3 | 234.6   |
| Total Energy Served %     |          | 13%   | 35%   | 72%     |

Standardised kit per house of 5kW PV and Tesla Powerwall 13.5kWh



# Minutes exposed to outage by household



 58% households have reduced their minutes exposed to an outage to zero/yr across all scenarios

### Reliability - SAIDI postcode area 4051

|                      | 0%        | 10%     | 25%     | 50%     |
|----------------------|-----------|---------|---------|---------|
| House                | 562,044   | 505,839 | 421,533 | 281,022 |
| Unit                 | 379,475   | 379,475 | 379,475 | 379,475 |
| Business             | 61,314    | 61,314  | 61,314  | 61,314  |
| <b>Total minutes</b> | 1,002,832 | 946,628 | 862,321 | 721,810 |
| SAIDI_local          | 76.21     | 71.94   | 65.54   | 54.86   |
| % reduction          |           | 5.6%    | 14.0%   | 28.0%   |

- Deeper dive into area reliability using area SAIDI measures
- From Energex substation data
- STPIS implications (network reliability incentive schemes)

#### Results

- The value of increased reliability per household \$AUD
  223 per year
- SAIDI metrics would be improved by 14% if the current 24.9% of households were to incorporate battery storage.

# Financial results - Reliability

|                                          |    | 10%     | 25%           | 50%             |
|------------------------------------------|----|---------|---------------|-----------------|
| Capex                                    | \$ | 245,000 | \$<br>647,500 | \$<br>1,312,500 |
| PV+BESS NPV savings                      | \$ | 2,218   | \$<br>31,163  | \$<br>132,048   |
| Value of energy not served(wholesale \$) | \$ | 6,738   | \$<br>17,809  | \$<br>36,183    |
| % of Baseline wholesale energy cost      |    | 13.7%   | 36.1%         | 73.3%           |
| Value of energy not served (Retail \$)   | \$ | 30,364  | \$<br>54,781  | \$<br>110,642   |
| % of Baseline retail energy cost         |    | 14.1%   | 25.5%         | 51.4%           |
| LOLP delta                               |    | 0.0966  | 0.2518        | 0.5071          |
| VCR of reliability improvement           | \$ | 222,437 | \$<br>580,037 | \$<br>1,168,154 |

LOLP – reduced by half

### Why is this important?

- Reliability is primary driver of network spending
- Household investments can result in free-rider benefits for network operators and or other households
- Can result in perverse outcomes e.g. STIPIS incentive scheme in Australia allows DNSPs to claim higher revenues for reliability improvements.



### Conclusions

- Reliability improvements can be a significant contributor to the cost benefit analysis of PV and storage incorporation
- Rarely considered vs costs of existing PV subsidy
- Rewards should be aligned with beneficial actions



## Grazie mille

